Folate biofortification of tomato fruit.
نویسندگان
چکیده
Folate deficiency leads to neural tube defects and other human diseases, and is a global health problem. Because plants are major folate sources for humans, we have sought to enhance plant folate levels (biofortification). Folates are synthesized from pteridine, p-aminobenzoate (PABA), and glutamate precursors. Previously, we increased pteridine production in tomato fruit up to 140-fold by overexpressing GTP cyclohydrolase I, the first enzyme of pteridine synthesis. This strategy increased folate levels 2-fold, but engineered fruit were PABA-depleted. We report here the engineering of fruit-specific overexpression of aminodeoxychorismate synthase, which catalyzes the first step of PABA synthesis. The resulting fruit contained an average of 19-fold more PABA than controls. When transgenic PABA- and pteridine-overproduction traits were combined by crossing, vine-ripened fruit accumulated up to 25-fold more folate than controls. Folate accumulation was almost as high (up to 15-fold) in fruit harvested green and ripened by ethylene-gassing, as occurs in commerce. The accumulated folates showed normal proportions of one-carbon forms, with 5-methyltetrahydrofolate the most abundant, but were less extensively polyglutamylated than controls. Folate concentrations in developing fruit did not change in controls, but increased continuously throughout ripening in transgenic fruit. Pteridine and PABA levels in transgenic fruit were >20-fold higher than in controls, but the pathway intermediates dihydropteroate and dihydrofolate did not accumulate, pointing to a flux constraint at the dihydropteroate synthesis step. The folate levels we achieved provide the complete adult daily requirement in less than one standard serving.
منابع مشابه
Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis.
Plants are the main source of folate in human diets, but many fruits, tubers, and seeds are poor in this vitamin, and folate deficiency is a worldwide problem. Plants synthesize folate from pteridine, p-aminobenzoate (PABA), and glutamate moieties. Pteridine synthesis capacity is known to drop in ripening tomato fruit; therefore, we countered this decline by fruit-specific overexpression of GTP...
متن کاملBiofortification of plant-based food: enhancing folate levels by metabolic engineering.
H umans require a minimum daily intake of essential micronutrients, vitamins, and minerals to maintain optimal health. Micronutrient malnutrition, the dietary insufficiency of one or more micronutrients, has far-reaching negative health consequences at all stages of life and was a pervasive health issue for all countries at the turn of the 20th century. Micronutrient malnutrition has been signi...
متن کاملTomato fruits: a good target for iodine biofortification
IODINE IS A TRACE ELEMENT THAT IS FUNDAMENTAL FOR HUMAN HEALTH its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however, plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition....
متن کاملDetermination the Usefulness of AhHMA4p1::AhHMA4 Expression in Biofortification Strategies
AhHMA4 from Arabidopsis thaliana encodes Zn/Cd export protein that controls Zn/Cd translocation to shoots. The focus of this manuscript is the evaluation of AhHMA4 expression in tomato for mineral biofortification (more Zn and less Cd in shoots and fruits). Hydroponic and soil-based experiments were performed. Transgenic and wild-type plants were grown on two dilution levels of Knop's medium (1...
متن کاملSelenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.).
Although selenium (Se) is a known anticarcinogen, little is known regarding how Se affects other nutritional qualities in crops. Tomato ( Solanum lycopersicon ) was supplied with 0-50 μM selenate and analyzed for elemental composition and antioxidant compounds. When supplied at low doses (5 and 10 μM) via the roots, Se stimulated the synthesis of phenolic compounds in leaves and reduced the lev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 10 شماره
صفحات -
تاریخ انتشار 2007